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2 Multivariate Normal Distribution

Multivariate Normal Distribution occupies a central place in

statistical theory- so much so that a traditional course on

Multivariate Statistics ends up being a course on Multivariate

Normal Distribution. Indeed, other than some bivariate

distributions, Wishart distribution and Dirichlet distribution we

do not come across other examples of multivariate

distributions.
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3 Beyond Normal distribution

Normal distribution seems to be appropriate for modeling

quantities arising from natural phenomenon- such as heights of

individuals, monthly rainfall in a city, transmission error in a

radio signal,...

However in the first course on Econometrics we learn that for

describing income distribution, Normal (rather log-normal)

distribution underestimates tail of the distribution.
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4 Beyond Normal distribution..

In other words, if we fit a log-normal distribution to Income

data, it underestimates the proportion of ultra rich people.

The same phenomenon is observed if we try to fit normal

distribution to daily stock return data. This has been observed

for stocks of various companies over different time periods and

across different countries.
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5 Beyond Normal distribution..

Let Sn be the price of stock of a company on nth day. The

return on nth day is

R ′n =
Sn−Sn−1

Sn−1

Note that R ′n = Sn
Sn−1
−1≈−(1− Sn

Sn−1
)≈ log( Sn

Sn−1
) if Sn

Sn−1
−1

is close to zero. Hence the return on log scale defined as

Rn = log(Sn)− log(Sn−1)

is approximately close to R ′n as long as day to day price

variations are not huge.
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6 Beyond Normal distribution..

The model used by Black-Scholes assumes that Rn has Normal

distribution. Data from various markets strongly suggests that

the Normal model underestimates the tails of the true

distribution- one sees deviations of over 4 σ often - which has

extremely low probability under the Normal model.

Distribution with fatter tails (than normal) seem to fit the

data much better- double exponential, stable distributions

among others.
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7 Beyond Normal distribution..

Let us look at some data from Mexican stock market. We

look at two companies, Telmex and Cemex . The daily

log-returns data from for Telmex fro 1991 and for Cemex from

1999 has been taken and in each case and percentiles, mean,

median, variance etc have been shown for the empirical

distribution as well as best-fit Normal, Double exponential and

logistic distribution
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8 Log returns for Telmex..
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9 Log returns for Cemex..

Rajeeva L. Karandikar Director, Chennai Mathematical Institute

Copulas, Tail dependence and Value at Risk



10 Beyond Normal distribution..

In both the cases, we see that Normal distribution

underestimates the tail probabilities by a wide margin - the 1

percentile and 99 percentiles for the best fit normal

distribution are wide off the mark. The double exponential

seems a better fit.
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11 Beyond Normal distribution....

For a r.v. Z with normal distribution (variance 1),

P(| Z |> t)∼ C exp(−t2).

For a r.v. X with double exponential distribution,

P(| X |> t)∼ C exp(−t)

while for a r.v. Y with Cauchy distribution,

P(| Y |> t)∼ C
1

t
.

The last is an example of a fat-tailed distribution. Other

examples are, t-distribution with small degrees of freedom,

Pareto distribution, stable distributions.
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12 Beyond Normal distribution....

Since risk depends on the tail of the distribution, while the

normal and observed distributions of stock prices differ the

most in the tails, we may see massive underestimation of risk.

So it is crucial to choose the correct distribution while

computing risk.
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13 Value-at-Risk

Traditionally, risk associated with a asset (which is stochastic)

was measured by its standard deviation. In the Gaussian world,

the mean and standard deviation of course capture the full

picture.

Once people started examining distributions other than

gaussian, need was felt for a new risk measure. The new

measure that has been widely accepted is called Value-at-Risk.
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14 Value-at-Risk

Consider an asset whose value at time T is modeled as ST . If

ST has Normal distribution with mean µ and variance σ then

P(ST ≤ µ−2.33σ) = 0.01.

Then we can be assured that the loss will not be more than

V =−(µ−2.33σ) with 99% probability and V gives us a

measure or Risk associated with the underlying asset.
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15 Value-at-Risk

Thus in general, we look for a value V such that

P(ST ≤−V ) = 0.01

then our loss is less than or equal to V with 99% probability,

or loss exceeds V with only 1% probability.

V is called the 1% Value-at-Risk or 1% VaR.

−V is the lower 1st percentile of the asset distribution, or V is

the 99th percentile of the loss distribution L =−ST .

We can similarly talk about 1% VaR or α% VaR.
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16 Value-at-Risk

VaR is not additive: VaR of sum of random variables is not

equal to sum of the VaR’s- it is bounded above by the sum.

Thus, to obtain VaR for a portfolio we must look at the joint

distribution of the underlying assets.
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17 Value-at-Risk

According to Basel II accord, the capital adequacy for a Bank

is to be determined based on VaR of its assets and so accurate

measurement of VaR for a basket of assets is an important

step. Using Gaussian distribution when the assets have a

fatter tail results in under estimation of the VaR.
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18 Beyond Normal distribution..

When considering a portfolio of stocks m which are possibly

correlated, we need to model

(R1
n , . . .R

m
n ), n = 1,2, . . .

We need a multivariate distribution whose marginals are say

double exponential and with a given correlation matrix.
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19 Beyond Pearson’s Correlation coefficient

Perfectly positively dependent random variables do not

necessarily have a correlation of 1; perfectly negatively

dependent random variables do not necessarily have a

correlation of -1.

Possible values of correlation depend on the marginal

distribution of the random variables. All values between -1

and 1 are not necessarily attainable.
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20 Beyond Pearson’s Correlation coefficient

Correlation is not invariant under transformations of the

random variables. For example, log(X ) and log(Y )

generally do not have the same correlation as X and Y .

Correlation is only defined when the variances of the

random variables are finite. It is not an appropriate

dependence measure for very heavy-tailed random

variables where variances may be infinite.
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21 Spearman’s Rank Correlation coefficient

The Spearman’s Rank Correlation coefficient between two

continuous random variables X ,Y is defined as

ρ(X ,Y ) = r(F (X ),G (Y ))

where r denotes the Pearson’s Correlation coefficient and F ,G

are distribution functions of X ,Y respectively.
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22 Spearman’s Rank Correlation coefficient.....

Usually, Spearman’s Rank Correlation coefficient is defined

only for a finite sample. Given random variable (X ,Y ), if

(X1,Y1), (X2,Y2), . . ., (Xn,Yn) is a random sample from

(X ,Y ), and if

ρn = Rank Correlation
(
(X1,X2, . . . ,Xn),(Y1,Y2, . . . ,Yn))

then it can be shown that

ρn→ ρ(X ,Y ) a.s.
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23 Spearman’s Rank Correlation coefficient.....

It is easy to see that if u,v are strictly increasing functions

then for any random variables X ,Y

ρ(u(X ),v(Y )) = ρ(X ,Y ).
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24 Multivariate Distribution with double exponential

marginals

Question: How do we construct a joint distribution in

m-dimension where all marginals are double exponential and

all rank correlations are say 0.75. Of course, these conditions

do not determine the joint distribution uniquely. But can we

construct one such?
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25 Multivariate Distribution with double exponential

marginals

One answer: Let X = (X1,X2, . . . ,Xm) have multivariate

normal distribution with mean vector 0, all variances equal to

one and all (Pearson) correlations equal to 0.75. Let Φ denote

the distribution function of standard normal distribution. Let

Ui = Φ(Xi ), 1≤ i ≤m. Now all marginal distributions of

U = (U1,U2, . . . ,Um) are Uniform. Let G denote the

distribution function of double exponential distribution and let

Yi = G−1(Ui ), 1≤ i ≤m.

Then each Yi has the desired distribution G .
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26 Multivariate Distribution with double exponential

marginals

Clearly the components are not independent. Explicit

computation of correlation between Yi and Yj seems difficult.

It can be shown that Spearman correlation ρij between Yi and

Yj is 0.73414. If we had started with corr(Xi ,Xj) = 0.765362

for i 6= j , then we would have got ρij = 0.75.
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27 Multivariate Distribution with given marginals

The construction is flexible enough- all component marginal

distributions could have different parameters or could come

from different families (continuous distributions). Also, the

correlations need not be same for all pairs as we will see shortly
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28 Copula

A Copula (in m dimensions) is a joint distribution in m

dimensions such that each of its marginals is Uniform (0,1).

Example: U = (U1,U2, . . . ,Um) where Ui = Φ(Xi ), 1≤ i ≤m

and X = (X1,X2, . . . ,Xm) have multivariate normal distribution

with mean vector 0, all variances equal to one and correlations

rij . This copula (distribution of U) is called the Gaussian

copula. The Spearman rank correlations ρij between Ui ,Uj for

i 6= j are given by

ρij =
6

π
arcsin

(rij
2

)
. (1)
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29 Multivariate Distribution with given marginals..

Now if we want to construct a random vector

Z = (Z1,Z2, . . . ,Zm)

in m dimension such that

Zi has marginal distribution Gi (assumed to be continuous)

and

spearman correlation between Zi and Zj is ρij for i 6= j ,

we can proceed as follows.
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30 Multivariate Distribution with given marginals..

Let X = (X1,X2, . . . ,Xm) have multivariate normal distribution

with mean vector 0 and variance -covariance matrix Σ = (σij)

with σii = 1 and

σij = 2sin
(

πρij

6

)
.

Then let Ui = Φ(Xi ), 1≤ i ≤m and Zi = G−1(Ui ).

Now Z = (Z1,Z2, . . . ,Zm) is such that Zi has marginal

distribution Gi and spearman correlation between Zi and Zj is

ρij for i 6= j . Here we need to use the fact that the spearman

correlation does not change under monotone transformations

of components.
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31 Multivariate Distribution with given marginals..

The joint distribution of Z is completely determined by the

marginal distributions Gi and the Gaussian copula with

spearman correlation matrix (ρij) (with ρii = 1.)
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32 Multivariate Distribution with given marginals..

This use of Gaussian copula was made popular by David X. Li

in the finance literature. This was seen as a way of dealing

with correlated assets whose distribution was not Gaussian and

was widely used.

A search for gaussian copula wall street in google will yield

several links to articles titled Recipe for Disaster: The Formula

That Killed Wall Street. The reference to the formula here is

the Gaussian Copula.

Financial Times also has a page titled The formula that felled

Wall St again referring to the Gaussian copula.
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33 Copula examples

What is wrong with the Gaussian copula. Well before we

explore this, let us have examples of other copulas.

An important family of copulas is the class of Archimedean

copula. A continuous, strictly decreasing, convex function

φ : [0,1]→ [0,∞] satisfying φ(1) = 0 and φ(0) = ∞ is known as

an Archimedean copula generator. Given such a function φ , let

C (u1,u2, . . . ,um) = φ
−1(φ(u1) + φ(u2) + . . .+ φ(um)).
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34 Copula examples...

If ψ = φ−1 is completely monotone i.e. if for all k

(−1)k
dk

(dt)k
ψ(t)≥ 0,

Then

C (u1,u2, . . . ,um) = φ
−1(φ(u1) + φ(u2) + . . .+ φ(um))

defines a copula.
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35 Copula examples...

Example:

Gumbel copula: φ(t) = (− log(t))θ for θ ≥ 1

Clayton copula: φ(t) = 1
θ

(t−θ −1) for θ > 0

Frank copula: φ(t) =− log(e
−θt−1
e−θ−1 ) for θ 6= 0

In each of these copulas the rank correlation ρij between the

i th and j th component is a constant for i 6= j . This puts a

limitation on the use of Archimedean copula beyond dimension

two.
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36 t-copula

Let X = (X1,X2, . . . ,Xm) have multivariate normal distribution

with mean vector 0 and variance -covariance matrix Σ = (σij).

Let S have a χ2 distribution with n-degrees of freedom. Let

Yi =
Xi

(
√
S
n )

.

Note that the same χ2 random variable in the denominator for

all i .

So if Hn is distribution function of t distribution with n

degrees of freedom, the marginal distribution of each Yi is Hm

and hence Ui = Hm(Yi ) has uniform distribution.
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37 t-copula....

The joint distribution of (U1,U2, . . . ,Um) so constructed is

called the t- copula with n degrees of freedom. Let Γ = (ρij)

be the rank correlation matrix of (U1,U2, . . . ,Um). An explicit

relation between Σ (the pearson correlation matrix of

(X1,X2, . . . ,Xm)) and Γ is not available to the best of my

knowledge. The same can be obtained via a massive

simulation effort.

Then one can obtain t copula with n degrees of freedom and a

given rank correlation matrix Γ.
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38 Copula

To recap, a joint distribution function can be viewed as

combination of marginal distributions and the underlying

copula, with copula measuring the dependence structure. Also,

if the marginals are given and are such that one can simulate

from the distribution (easily), then for Gaussian or t - copula

with a given correlation structure, it is easy to simulate from

the required multivariate distribution.
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39 Tail dependence.

Here is an interesting fact. Let (X ,Y ) have bivariate normal

distribution with mean (0,0), variances 1 and correlation ρ

with |ρ|< 1. Let ξp denote the pth percentile of Normal

distribution. Then

lim
p↓0

P(Y < ξp | X < ξp) = 0

and

lim
p↑1

P(Y > ξp | X > ξp) = 0.

This holds even when ρ = 0.99!
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40 Tail dependence

For a univariate random variable X , let us denote by γ(X ,p)

the pth percentile of the distribution of X . For random

variable X ,Y let

λL(X ,Y ) = lim
p↓0

P(Y < γ(Y ,p) | X < γ(X ,p))

λU(X ,Y ) = lim
p↑1

P(Y > γ(Y ,p) | X > γ(X ,p)).

λL(X ,Y ) measures the lower tail dependence and λU(X ,Y )

measures upper tail dependence.
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41 Tail dependence

If f and g are increasing functions, it is easy to see that

λL(X ,Y ) = λL(f (X ),g(Y ))

λU(X ,Y ) = λU(f (X ),g(Y ))

and thus λL and λU are functions of the underlying copula and

not the marginal distribution functions. Thus if X ,Y have

marginal distributions F ,G and the underlying copula is the

Gaussian copula, then we have

λL(X ,Y ) = λU(X ,Y ) = 0.
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42 Tail dependence

Consider a portfolio of stocks m which are same sector

companies and R j
n denote the returns on log scale on j th

stock. Then it is empirically observed that when one of them

goes down by a big margin - so do the others. In other words,

empirical data suggests that there is lower tail dependence,

while using a Gaussian copula to model

(R1
n , . . .R

m
n ), n = 1,2, . . .

would imply no lower tail dependence! So Gaussian copula is

not appropriate to model the log returns.
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43 Tail dependence

A better choice seems to be t copula with small degrees of

freedom. For a t copula with ν degrees of freedom with

Pearson correlation r for the underlying normals, one has

λL = λU = 2Hν+1

(
−
√

(ν + 1)(1− r)

1 + r

)
where Hν is the distribution function of the t distribution.

Even for r = 0 there is some tail dependence.
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44 Tail dependence

While t with 1 or 2 degrees of freedom would be better than

Gaussian copula, for a t copula λL = λU whereas one would

like λL > λU .

Rajeeva L. Karandikar Director, Chennai Mathematical Institute

Copulas, Tail dependence and Value at Risk



45 Copula and VaR

We had seen that using Gaussian distribution when the assets

have a fatter tail results in under estimation of the VaR.

Likewise, using Gaussian copula in the context of assets which

have tail dependence too underestimates the tail probabilities

for the portfolio. The next two slides give an idea of tail

probabilities for Gaussian and t-copulas.
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