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THE NONSUBSTITUTION THEOREM
WITH JOINT PRODUCTION

by
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1. Introduction

One of the most striking results of fixed coefficient technology is the
nonsubstitution theorem. The theorem shows that under certain conditions
there is a unique set of techniques of production which will be used re-
gardless of the structure of demand. Consequently, it is unnecessary to have
any information about consumer demand in order to calculate the equilib-
rium prices. Some authors have claimed that the result no longer holds if
joint production is allowed (see, for example, Johansen, 1972; Koopmans,
1953; Otani, 1974).

We state and prove the theorem and give examples where all the
assumptions are satisfied and joint production is also present.

2. The Model

In the economy, there is a set of 7 industries which produce # (= 2)
goods. There is a single non-producible factor of production (which we call
labor). Each industry is completely specified by a set of (input-output) coeffi-
cients. Industry 7 is described by

(ail’ cany aiﬂ’ blﬂ—l—l) Z___ 1’ cany m

where a; = the net amount of good j produced at the unit level of opera-
tion of industry .
We assume constant returns to scale (and no externality) for every
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industry. So we can normalize industry i by setting b, _, = 1fori = 1, ...,
m.

Notations: By A we will denote the m X #» matrix whose ijth
element is 4;. The ith row of A will be denoted by a;.
Let x be a (row) vector in R™. Then x » 0 will mean x, > 0 for
1, .., m and x = (x), ..., x,), and x = 0 will mean x, = 0 for
1, ..., m.
Let R = {x : x = 0}. Define d () to be the boundary of the set
S € R7; let §° denote the complement of the set § in R”.

If Ais an # X » matrix and its inverse exists, we denote the inverse
by AL

z
;

Assumptions:

(A1) For all x € R”, xA = 0 implies that {i : x; > 0} has at least #
elements.

Remark: (A1) means that to produce all goods in the economy at least
n industries are needed. However, (A1) is compatible with joint production
(for # = 3) as the following example shows:

Example: a; = (1,1, - 1) a, = (1,~1, 1) a; = (—1, 1, 1). Any two
of the above cannot produce all the three goods but the three together can.

k
(A2) There exist indices 7;, ..., 7, such that Zl x; a, > 0, k= n
¢t =

where x, >0 for t =1, ..., k. (A2) means that there exists a set of #
industries which can realize a strictly positive net output vector.

3. Preliminaries

Consider a set of # rows from A. Denote them by {4,, ..., 4,} without
any loss of generality.

Let D = {d € R" : d » 0; there exists x in R” such that x » 0

and X;a; = a’}

i=1 J
Lemma 1: Let (A1) hold. Let D # @ for a set of industries 1, ..., # as

defined above. Then {4, ..., 4,} is a set of linearly independent vectors in
R".
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Proof: Suppose not. Consider the following Linear Programming prob-

n
2 x;a; = d; where x, =2 0 fori = 1, ..,

lem: minimize X x; subject to
i=1 i=1

n and where 4 € D. Since D # §, the solution space is nonempty and

the solutions are bounded below by 0 vector. Let S denote the set of

solutions to the above problem. Then § is a nonempty compact subset of

R”. So, by Weirstrass’s Theorem, such a minimum exists. By supposition,

we can find a subset {4, ..., 4;} with # < n of {4, ..., 4,} such that it is a

basis of the non-negative solution of X x;4; = d (follows from a well
i=1

known Theorem in Linear Programming, see Gale, 1960, Theorem 2.11).
Let the solution be denoted by {x;, ..., x;}, t < n. Define x; = 0 for

i € {1, ..., n}/{ji, .., 7,3} Then é‘l x; a;, = d with 4 » 0. But clearly
x; # 0 for every i = 1, ..., n. This contradicts (A1) Q.E.D.

Lemma 2: Assume (Al) holds. If D = @ then D is an open subset
of R” (in the usual topology).

Proof: Suppose not. Then there exists & € D such that every open
set containing & contains a point of Df. Hence there exists a sequence
{d7} with &% € Dr for every ¢ = 1 and d¢ — d". Without loss of generality
we can truncate {d9} suitably to get 47 » 0 for every ¢ = 1. By lemma
1, there exists a unigque (row) vector x4 = (x{, ..., x7) such that & =

n

= X x7a, for every ¢ = 1 (since {aj, ..., a,} are linearly independent).

i=1

By assumption, for every ¢ = 1, @7 ¢ D and 47 >» 0. So for a fixed

g there does not exist x7 | 0 such that @7 = X x7 a4, Hence there exists

i=1
xf < 0 for some 7 in {1, ..., #} (for fixed g). Thus, there exists 7, such

that x? = 0 for infinitely many ¢’s. So, there is a subsequence {g,,} of the
sequence {g} satisfying:

xim < 0 forall m = 1 (3.1)
On the other hand, 4 € D. Thus there exists x° » 0 such that & =
= Z x)a;and x) > 0 where x* = (x{, ..., x9). But this contradicts (3.1)

i=1

Q.E.D.
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Lemma 3: Assume (A1) holds and D = ¢. If d = 0 and d =

= § Xid; where x, = 0, then d € D (where D is the closure of D in

the usual topology).

Proof: Suppose d ¢ D. Let dy € D. Define: d, = ed + (1 —¢) d, for
0 <e=<1. Since Dis closed, there exists e € (0, 1) such that 4, ¢ D~.
Let " = sup{e: d, € D}. Since d ¢ D it follows that e* < 1. Moreover
4. € D. Bu, by definition, d, € d (D). Clearly, ¢ < 1 implies that

e

d, » 0. Let 4, = b x)a; where x> > 0 foralli = 1, .., n
Then, =1

n

d, =¢d+ (1-¢)dy = ¢ Zxa + (1-¢) Z %04,

i=1 i=1 t

= ZHen+ 1-e)fa = £y

where ¥ =€ x + (1 —e)x?
Since ¢* < 1 and x;, = 0 for i = 1, ..., n, it follows that y; > 0 for
i =1, .., n. Thus d € D. But then by lemma 2, there exists an open set

Z containing_d, with Z € D. This contradicts the fact that d, €d (D)
Hence d € D. Q.ED.

Corollary: Let {a,, ..., a,} be n rows of A such that '21 x;d; » 0

for some x = ixl, oy %,) > 0. Then the matrix A = {a), ..., a,} is
invertible and (4)~! = 0.
Proof: In Lemma 3, set ¢, = (1, 0, ); e; = (0, 1, 0, 0) ...
= (0, 0, .., 0, 1). Then there exists x,, ..., x, = 0 such that xlA =

= el, oy X, A = ¢,. Thus, D = R”_. Hence (A) exists. Since (A) le, =
= x; = 0 it follows that (A) 1 > 0.
4. The Nonsubstitution Theorem

By the convention adopted earlier, when a set of activities {2, ..., a,}
are operated at the levels {x;, ..., x,} the total labor requirement for this
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£
operation is X x,. We have to show that there exist # rows of A which are
i=1

capable of realizing a7y non-negative vector of outputs by involving the
“least use” of labor.

Theorem 1: Assume that (A1) and (A2) hold. Then there exist # .
linearly independent rows of A, {a), ..., a,} such that for all ¢ = 0, there

n
exists x = (x}, .., x,) with X x;a; = c. Moreover, if there exists a
i=1

k
set {s;, ..., 5z} such that (xb_l, o %) = 0 and X x

a,. = ¢ = 0
& j=1 9

k ”
then T x = ¥ .

i=1 Y i=1

Proof: Let ¢ = (cy, ..., ¢,) » 0. Consider the following Linear Pro-
gramming problem:

(P) minimize z x subject to Elx? a4, = ¢

By (A2), (P) has a feasible solution. Let {ay, ..., a,} be the optimal
basis. Then £ < 7. But, by (A1), £ > # — 1. Therefore £ = 1. We shall
show that this set satisfies all the properties asserted in the statement
of the theorem. .

We first show that {4, ..., 4,} minimizes the cost of producing e,
where 1 at the kth place and 0 elsewhere for £ — 1, ..., #. By lemma 3,

there are (unique) vectors x* = (xf, ey xf) = 04 = 1, .., n such that
7
51 xfa, = ¢ e, k=1, .,n (4.1)
n n n
Therefore Z X xta, = 3 ce,
k=1¢=1 k=1
”
so 2 Xa =c
f=1
n
where = X x>0

But since {4;, ..., 4,} is an optimal basis, (%, .., %,) is a unique, cost
minimizing vector.
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Suppose now {4, ..., 4,} does not minimize the labor cost for at least
one k. Without loss of generality, suppose the £ satisfying the condition of

the preceding sentence is #. Then, there is a set of vectors {7, ..., a }
of rows of A with k, < m and numbers {x{, ..., X} } such that
ky
21 x}a, = c,e, (4.2)
.2
and Z X< b X7 (4.3)

t=1 t=1

By combining (4.1) and (4.2) we get

kn n—1
2 xla +EEx,aZc . T 2 e =c
=1 k=1¢= k=1

and from (4.3) we get

Exj’+22xf<2x,+22x’ 2 X,
j=1¢=1 j=1¢=1 =1
But this contradicts the fact that {%,, ..., %,} is an optimal solution of (P),

since there is another feasible vector which entails a lower labor cost. This
proves the theorem. Q.E.D.

Remark: The method of proof of Theorem 1 is due to Chunder (1974).
However, he dealt with the no-joint-production case.

Theorem 2: In the above formulation there exists a unique p >» 0
associated with {4, ..., 4,} and it is invariant with respect to changes in the
composition of the final demand vector.

Proof: Let p; be the price per unit of net product / associated with
the set of activities {a,, ..., 4,} when the rate of profit is zero and the
exogenously specified price per unit of labor is unity. Then by definition

it follows that Ap = e where A is the matrix formed by {4, ..., a,}, p is
a column vector in R”; and e is the_(column) vector in R” with 1 in
every row. By corollary to Lemma 3, (A)~! = 0. Hence p = (A)~'e = 0.

Suppose p; = 0. Then x' A = ¢ e, where x! = (x}, ..., x!) is as
defined in (4. 1) Note that x! # 0 but x! Ap = ciep = ¢pp =0
Ap=-ceandx! = 0.S0,0 = ¢, p, = x! Ap # 0 a contradiction! Hence
» > 0. QED.

Remark: In the example given in section 2, if we take p to be the
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column vector with unity in every row and A = {4y, a,, a5} then all the
assumptions hold. Thus the discussion of Theorem 2 is not vacuous.
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IL TEOREMA DI NON SOSTITUZIONE CON PRODUZIONE
CONGIUNTA

E noto che nella tecnologia di Leontief senza produzione congiunta il teore-
ma di non sostituzione & valido. Alcuni autori hanno affermato che non lo & se si
introduce la produzione congiunta. Qui viene dimostrato il teorema di non sostitu-
zione sotto condizioni che ammettono certi tipi di produzione congiunta.





